Madagascar - Programme de protection et exploitation durable des ressources naturelles # VALUE CHAIN DEVELOPMENT THROUGH INNOVATION Use of Modern and efficient transformation process through the diffusion of GreeMadDomeRetort Household consumption streamlining through the promotion of clay improved stoves (Foyers Améliorés en Argile) #### **Production** Promotion of reforestation for energy purposes based on the Reboisement Villageois Individuel Model Harvesting & Transformation Supply chain reorganisation, by the producers, through the Centres Rural et Urbain de Commercialisation du Bois-Energie Vert Consumption #### **CHARCOAL PRODUCTION PROCESSES** Carbonisation techniques are grouped into 2 main principles: - Partly combusted load processes The energy required for carbonisation comes from the combustion of a share of the load - Retort kilns The pyrolysis gases combustion is controlled in order to supply the process with energy To assess the quality of a charcoal production - Carbonisation mass yield - The quality of the charcoal produced - Carbonisation emissions #### **CHARCOAL PRODUCTION PROCESSES** Partly combusted load processes are mainly small-scale processes - Include a wide range of charring techniques - Traditional & improved earth mound kilns - Brick kilns - Metal kilns - Advantages: - Low or no investment - Low technology - Local materials - Disadvantages - Low & variable yields (12 to 30%) - High pollution - Demanding on operator skills #### **CHARCOAL PRODUCTION PROCESSES** Retort kilns are mainly industrial processeses Some technologies are commercially available MOVI, Carbonex, Bruni/Cirad/Sidenergie,... - Advantages: - Consistent & high-quality production - No CH4 emissions - High yields: 35% & more - Disadvantages - High investment - Need for handling equipment - High technology #### **EMISSIONS FROM CHARCOAL PRODUCTION** The fumes released from the Partly combusted load processes contain In retort kilns, the combustion of pyrolysis gases removes CH4 and other polluting compounds. #### MAIN KILNS IN USE IN MADAGASCAR Traditional kilns Yield 12 - 15 % *Improved traditional kilns* Yield 22 - 28 % Both techniques emit methane & polluting compounds #### These kilns mainly differ in - the training of charcoal makers - good charcoal production practices - some simple technical modifications #### **ENVIRONMENTAL IMPACT OF CHARCOAL PRODUCTION** ### CHARCOAL PRODUCTION YIELD & EMISSIONS #### 1 tonne charcoal production @ 35% Yield release 15,2 CO2 Teg @ 12% Yield release 5,4 CO2 Teq @ 25% Yield release 5,4 CO2 Teg From an environmental perspective improving carbonisation efficiency and eliminating methane emissions are of key importance Avoided CO2Teq emissions by substituting one tonne charcoal produced at a yield of 12% with one tonne of charcoal produced at a higher yield ### **GMDR CHARCOAL PRODUCTION KILN** Brick & reinforced concrete kiln No metal (reduced wear and tear costs) Divided in 3 parts: - Combustion chamber - Carbonization chamber - Smoke cleaning system and chimney #### FIELD TRIALS - Monitoring of 45 carbonisation cycles of Eucalyptus wood from plantations - 23 cycles without flue gas cleaning (GMDR 2) - 25 cycles with flue gas cleaning (GMDR3) - The following information were recorded - Mass of incoming wood (load) - Wood moisture content - Mass of charcoal produced - For half of these tests - CH4 concentration - Kiln Temperature - gas flow ## THE MASS YIELD OF A GMDR #### The yields are - among the highest charcoal production yields - very stable - not influenced by the gas cleaning #### **EMISSIONS FROM A GMDR** Thanks to flue gas cleaning, GMDR emits only 4 kg of methane/ton of charcoal 35% efficiency + CH4 remove avoids the emission of 13 CO2Teq /Tonne of charcoal #### **KEY ELEMENTS** - GMDR is a very high yield charcoal production technique - Low technology - Long life span (more then 10 years) - Reduces the time needed for charcoal makers by 3 - High and stable yields (35%) - CH4 cleaning - By replacing one tonne of traditional kiln charcoal, one tonne of GMDR charcoal avoids 13 CO2Teq - Compared to traditional kilns, a GMDR avoids the emission of 400 CO2Teq/year - Low cost (construction 5000 €, support 5000€) #### **PERSPECTIVES** - The implementation is done in consultation with the beneficiaries according to the possibilities of their plantation (harvesting plans) - The set up an efficient management structure is needed - An appropriate and sufficient training component is to be provided - In Madagascar, 54 GMDRs are under construction - This represents 21,000 CO2 Teq avoided per year - The 7000 ha of the DIANA Region could be exploited with 270 GMDRs - The potential for using GMDRs is significant in Madagascar, as it is in sub-Saharan Africa # #### MORE INFORMATION? Temmerman M., Andrianirina R., Richter F., 2019. Performances techniques et environnementales du four de carbonisation *Green Mad Retort* à Madagascar. Bois et Forêts des Tropiques, 340 : 43-55. Doi: https://doi.org/10.19182/bft2019.340.a31700 OU info@eco-consult.com