Madagascar - Programme de protection et exploitation durable des ressources naturelles







# VALUE CHAIN DEVELOPMENT THROUGH INNOVATION



Use of Modern and efficient transformation process through the diffusion of <a href="mailto:GreeMadDomeRetort">GreeMadDomeRetort</a>

Household consumption streamlining through the promotion of clay improved stoves (Foyers Améliorés en Argile)

#### **Production**

Promotion of reforestation for energy purposes based on the Reboisement Villageois Individuel Model

Harvesting & Transformation



 Supply chain reorganisation, by the producers, through the Centres Rural et Urbain de Commercialisation du Bois-Energie Vert Consumption





#### **CHARCOAL PRODUCTION PROCESSES**

Carbonisation techniques are grouped into 2 main principles:

- Partly combusted load processes
   The energy required for carbonisation comes from the combustion of a share of the load
- Retort kilns
   The pyrolysis gases combustion is controlled in order to supply the process with energy

To assess the quality of a charcoal production

- Carbonisation mass yield
- The quality of the charcoal produced
- Carbonisation emissions





#### **CHARCOAL PRODUCTION PROCESSES**

Partly combusted load processes are mainly small-scale processes

- Include a wide range of charring techniques
  - Traditional & improved earth mound kilns
  - Brick kilns
  - Metal kilns
- Advantages:
  - Low or no investment
  - Low technology
  - Local materials
- Disadvantages
  - Low & variable yields (12 to 30%)
  - High pollution
  - Demanding on operator skills



#### **CHARCOAL PRODUCTION PROCESSES**

Retort kilns are mainly industrial processeses

Some technologies are commercially available MOVI, Carbonex, Bruni/Cirad/Sidenergie,...

- Advantages:
  - Consistent & high-quality production
  - No CH4 emissions
  - High yields: 35% & more
- Disadvantages
  - High investment
  - Need for handling equipment
  - High technology





#### **EMISSIONS FROM CHARCOAL PRODUCTION**

The fumes released from the Partly combusted load processes contain









In retort kilns, the combustion of pyrolysis gases removes CH4 and other polluting compounds.

#### MAIN KILNS IN USE IN MADAGASCAR

Traditional kilns

Yield 12 - 15 %

*Improved traditional kilns* 

Yield 22 - 28 %



Both techniques emit methane & polluting compounds



#### These kilns mainly differ in

- the training of charcoal makers
- good charcoal production practices
- some simple technical modifications

#### **ENVIRONMENTAL IMPACT OF CHARCOAL PRODUCTION**



### CHARCOAL PRODUCTION YIELD & EMISSIONS

#### 1 tonne charcoal production

@ 35% Yield

release 15,2 CO2 Teg @ 12% Yield release 5,4 CO2 Teq @ 25% Yield release 5,4 CO2 Teg

From an environmental perspective improving carbonisation efficiency and eliminating methane emissions are of key importance

Avoided CO2Teq emissions by substituting one tonne charcoal produced at a yield of 12% with one tonne of charcoal produced at a higher yield



### **GMDR CHARCOAL PRODUCTION KILN**





Brick & reinforced concrete kiln

No metal (reduced wear and tear costs)

Divided in 3 parts:

- Combustion chamber
- Carbonization chamber
- Smoke cleaning system and chimney





#### FIELD TRIALS

- Monitoring of 45 carbonisation cycles of Eucalyptus wood from plantations
  - 23 cycles without flue gas cleaning (GMDR 2)
  - 25 cycles with flue gas cleaning (GMDR3)
- The following information were recorded
  - Mass of incoming wood (load)
  - Wood moisture content
  - Mass of charcoal produced
- For half of these tests
  - CH4 concentration
  - Kiln Temperature
  - gas flow









## THE MASS YIELD OF A GMDR

#### The yields are

- among the highest charcoal production yields
- very stable
- not influenced by the gas cleaning



#### **EMISSIONS FROM A GMDR**





Thanks to flue gas cleaning, GMDR emits only 4 kg of methane/ton of charcoal



35% efficiency + CH4 remove avoids the emission of 13 CO2Teq /Tonne of charcoal

#### **KEY ELEMENTS**

- GMDR is a very high yield charcoal production technique
- Low technology
- Long life span (more then 10 years)
- Reduces the time needed for charcoal makers by 3
- High and stable yields (35%)
- CH4 cleaning
- By replacing one tonne of traditional kiln charcoal, one tonne of GMDR charcoal avoids 13 CO2Teq
- Compared to traditional kilns, a GMDR avoids the emission of 400 CO2Teq/year
- Low cost (construction 5000 €, support 5000€)

#### **PERSPECTIVES**

- The implementation is done in consultation with the beneficiaries according to the possibilities of their plantation (harvesting plans)
- The set up an efficient management structure is needed
- An appropriate and sufficient training component is to be provided
- In Madagascar, 54 GMDRs are under construction
- This represents 21,000 CO2 Teq avoided per year
- The 7000 ha of the DIANA Region could be exploited with 270 GMDRs
- The potential for using GMDRs is significant in Madagascar, as it is in sub-Saharan Africa



# 



#### MORE INFORMATION?

Temmerman M., Andrianirina R., Richter F., 2019. Performances techniques et environnementales du four de carbonisation *Green Mad Retort* à Madagascar. Bois et Forêts des Tropiques, 340 : 43-55.

Doi: https://doi.org/10.19182/bft2019.340.a31700

OU

info@eco-consult.com











