Detecting charcoal production sites using a combined remote sensing approach with Landsat-8, Sentinel-2 and VHR data

Hanneke van 't Veen¹, Diego Villamaina¹, Wilson A. Mugasha², Charles K. Meshack³, Maria J. Santos¹

- 1. Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland (hanneke.vantveen@geo.uzh.ch)
- 2. Department of Forest Resource Assessment and Management, Sokoine University of Agriculture, P.O. Box 3013, Chuo Kikuu, Morogoro, Tanzania
 - 3. Tanzania Forest Conservation Group, Plot 323, Msasani Village, Old Bagamoyo Road, PO Box 23410 Dar es Salaam. Tanzania

Advantages of using remote sensing to detect charcoal sites

Remote sensing allows us to acquire spatial information over large continuous areas

Monitoring and evaluation of charcoal production

Understanding charcoal **producer behaviour** (drivers)

Forest regeneration and biodiversity **impacts**

Challenges in charcoal site detection using remote sensing

Different satellites produce images with different properties

Landsat-8 Sentinel-2 Worldview-2/Planet (VHR)

Need for automated approaches and uncertainty analyses

Multiple remote sensing approaches have been developed to differentiate charcoal production sites

(Wurster, 2009; Bolognesi et al., 2015; Dons et al., 2015; Sedano et al., 2016; Nakalema, 2019; Sedano et al., 2020a,b; Sedano et al., 2021)

Current needs

- 1. Understand the need for very-high resolution (VHR) imagery
- 2. Automated methods to reduce man power and biases
- 3. Uncertainty analyses to better understand the robustness of remote sensing approaches

Research aims

- **1.** Develop two automated classification methods using Landsat-8 and Sentinel-2 data
- **2.** Use visual imagery inspection for charcoal kiln (scar) detection on VHR Worldview-2 and Planet imagery (Sedano et al. 2016)
- **3.** Compare the performance of the methods along a gradient of forest cover
- **4.** Derive a metric to assess the robustness of charcoal production site detection

Combining output from automated classification methods

- Classified as charcoal production site by one method
- Classified as charcoal production site by two methods
- Field data 2019 Charcoal production sites
- Visual imagery inspection 2020 Planet
- Visual imagery inspection 2019 Worldview-2
 - 1. Charcoal site classification Landsat-8
 - 2. Charcoal site classification Sentinel-2

Classification robustness

High: 2

Low: -0.53

- 3. **Overlap** classification Landsat-8 and Sentinel-2
- 4. Adjustment for **spatial uncertainty** in classification
- 5. Identifying areas with **different** levels of **robustness**

Summary and outlook

- A combined approach can improve charcoal production site detection
- A combined classification approach reduces the need for VHR imagery
- Robust charcoal production site recognition provides information on monitoring and evaluation

Thanks to all co-authors and collaborators

We would like to thank all **charcoal producers**, members of **Village Councils** and members of the **District government of Kilosa** for their help and interest in the research

University of Zurich

- Maria J. Santos
- Maarten Eppinga

Tanzania Forest Conservation group

- Charles K. Meshack
- Charles Leonard
- Sophia

Sokoine University of Agriculture

- Vincent Gerald Vyamana
- Wilson Mugasha
- Moshi Mpembela
- Jamal Jengo

Universidad Nacional Autónoma de México

Tuyeni Mwampamba

ESA Third Party Program missions

- **European Space Imaging**
- Maxar technologies

Thank you!

