Impacts of glacier recession and declining meltwater on mountain societies

Publikation: Bidrag til tidsskriftTidsskriftartikelfagfællebedømt

Dokumenter

Glacierized mountains are often referred to as our world's water towers because glaciers both store water over time and regulate seasonal stream flow, releasing runoff during dry seasons when societies most need water. Ice loss thus has the potential to affect human societies in diverse ways, including irrigation, agriculture, hydropower, potable water, livelihoods, recreation, spirituality, and demography. Unfortunately, research focusing on the human impacts of glacier runoff variability in mountain regions remains limited, and studies often rely on assumptions rather than concrete evidence about the effects of shrinking glaciers on mountain hydrology and societies. This article provides a systematic review of international research on human impacts of glacier meltwater variability in mountain ranges worldwide, including the Andes, Alps, greater Himalayan region, Cascades, and Alaska. It identifies four main areas of existing research: (1) socioeconomic impacts; (2) hydropower; (3) agriculture, irrigation, and food security; and (4) cultural impacts. The article also suggests paths forward for social sciences, humanities, and natural sciences research that could more accurately detect and attribute glacier runoff and human impacts, grapple with complex and intersecting spatial and temporal scales, and implement transdisciplinary research approaches to study glacier runoff. The objective is ultimately to redefine and reorient the glacier-water problem around human societies rather than simply around ice and climate. By systematically evaluating human impacts in different mountain regions, the article strives to stimulate cross-regional thinking and inspire new studies on glaciers, hydrology, risk, adaptation, and human–environment interactions in mountain regions.

OriginalsprogEngelsk
TidsskriftAnnals of the Association of American Geographers
Vol/bind107
Udgave nummer2
Sider (fra-til)350-359
Antal sider10
ISSN0004-5608
DOI
StatusUdgivet - 2017

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 171660908